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Abstract

Manual annotations of temporal bounds for object inter-

actions (i.e. start and end times) are typical training input

to recognition, localization and detection algorithms. For

three publicly available egocentric datasets, we uncover in-

consistencies in ground truth temporal bounds within and

across annotators and datasets. We systematically assess

the robustness of state-of-the-art approaches to changes in

labeled temporal bounds, for object interaction recogni-

tion. As boundaries are trespassed, a drop of up to 10%

is observed for both Improved Dense Trajectories and Two-

Stream Convolutional Neural Network.

We demonstrate that such disagreement stems from a

limited understanding of the distinct phases of an action,

and propose annotating based on the Rubicon Boundaries,

inspired by a similarly named cognitive model, for consis-

tent temporal bounds of object interactions. Evaluated on

a public dataset, we report a 4% increase in overall accu-

racy, and an increase in accuracy for 55% of classes when

Rubicon Boundaries are used for temporal annotations.

1. Introduction

Egocentric videos, also referred to as first-person videos,

have been frequently advocated to provide a unique per-

spective into object interactions [12, 5, 19]. These capture

the viewpoint of an object close to that perceived by the user

during interactions. Consider, for example, ‘turning a door

handle’. Similar appearance and motion information will be

captured from an egocentric perspective as multiple people

turn a variety of door handles.

Several datasets have been availed to the research

community focusing on object interactions from head-

mounted [2, 7, 6, 1, 15] and chest-mounted [21] cameras.

These incorporate ground truth labels that mark the start

and the end of each object interaction, such as ‘open fridge’,

‘cut tomato’ and ‘push door’. These temporal bounds are

the base for automating action detection, localization and

recognition. They are thus highly influential in the ability

of an algorithm to distinguish one interaction from another.

As temporal bounds vary, the segments may contain dif-

ferent portions of the untrimmed video from which the ac-

tion is extracted. Humans can still recognize an action even

when the video snippet varies or contains only part of the

action. Machines are not yet as robust, given that current al-

gorithms strongly rely on the data and the labels we feed to

them. Should these bounds be incorrectly or inconsistently

annotated, the ability to learn as well as assess models for

action recognition would be adversely affected.

In this paper, we uncover inconsistencies in defining

temporal bounds for object interactions within and across

three egocentric datasets. We show that temporal bounds

are often ill-defined, with limited insight into how they have

been annotated. We systematically show that perturbations

of temporal bounds influence the accuracy of action recog-

nition, for both hand-crafted features and fine-tuned classi-

fiers, even when the tested video segment significantly over-

laps with the ground truth segment.

While this paper focuses on unearthing inconsistencies

in temporal bounds, and assessing their effect on object in-

teraction recognition, we take a step further into proposing

an approach for consistently labeling temporal bounds in-

spired by studies in the human mindset.

Main Contributions More specifically, we:

• Inspect the consistency of temporal bounds for ob-

ject interactions across and within three datasets for

egocentric object interactions. We demonstrate that

current approaches are highly subjective, with visi-

ble variability in temporal bounds when annotating in-

stances of the same action;

• Evaluate the robustness of two state-of-the-art ac-

tion recognition approaches, namely Improved Dense

Trajectories [32] and Convolutional Two-Stream Net-

work Fusion [8], to changes in temporal bounds. We

demonstrate that the recognition rate drops by 2-10%

when temporal bounds are modified albeit within an

Intersection-over-Union of more than 0.5;

• Propose, inspired by studies in Psychology, the Rubi-
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con Boundaries to assist in consistent temporal bound-

ary annotations for object interactions;

• Re-annotate one dataset using the Rubicon Bound-

aries, and show more than 4% increase in recognition

accuracy, with improved per-class accuracies for most

classes in the dataset.

We next review related works in Section 2, before em-

barking on inspecting labeling consistencies in Section 3,

evaluating recognition robustness in Section 4 and propos-

ing and evaluating the Rubicon Boundaries in Section 5.

The paper concludes with an insight into future directions.

2. Related Work

In this section, we review all papers that, up to our

knowledge, ventured into the consistency and robustness of

temporal bounds for action recognition.

Temporal Bounds in Non-Egocentric Datasets The

leading work of Satkin and Hebert [24] first pointed out

that determining the temporal extent of an action is often

subjective, and that action recognition results vary depend-

ing on the bounds used for training. They proposed to find

the most discriminative portion of each segment for the task

of action recognition. Given a loosely trimmed training seg-

ment, they exhaustively search for the cropping that leads to

the highest classification accuracy, using hand-crafted fea-

tures such as HOG, HOF [13] and Trajectons [18]. Op-

timizing bounds to maximize discrimination between class

labels has also been attempted by Duchenne et al. [3], where

they refined loosely labeled temporal bounds of actions, es-

timated from film scripts, to increase accuracy across action

classes. Similarly, two works evaluated the optimal segment

length for action recognition [25, 36]. From the start of the

segment, 1-7 frames were deemed sufficient in [25], with

rapidly diminishing returns as more frames were added.

More recently, [36] showed that 15-20 frames were enough

to recognize human actions from 3D skeleton joints.

Interestingly, assessing the effect of temporal bounds is

still an active research topic within novel deep architectures.

Recently, Peng et al. [20] assessed how frame-level clas-

sifications using multi-region two-stream CNN are pooled

to achieve video-level recognition results. The authors re-

ported that stacking more than 5 frames worsened the ac-

tion detection and recognition results for the tested datasets,

though only compared to a 10-frame stack.

The problem of finding optimal temporal bounds is much

akin to that of action localization in untrimmed videos [33,

14, 11]. Typical approaches attempt to find similar tempo-

ral bounds to those used in training, making them equally

dependent on manual labels and thus sensitive to inconsis-

tencies in the ground truth labels.

An interesting approach that addressed reliance on train-

ing temporal bounds for action recognition and localization

is that of Gaidon et al. [9]. They noted that action recog-

nition methods rely on temporal bounds in test videos to be

strictly containing an action, and in exactly the same fash-

ion as the training segments. They thus redefined an action

as a sequence of key atomic frames, referred to as actoms.

The authors learned the optimal sequence of actoms per

action class with promising results. More recently, Wang

et al. [34] represented actions as a transformation from a

precondition state to an effect state. The authors attempted

to learn such transformations as well as locate the end of the

precondition and the start of the effect. However, both ap-

proaches [9, 34] rely on manual annotations of actoms [9]

or action segments [34], which are potentially as subjective

as the temporal bounds of the actions themselves.

Temporal Bounds in Egocentric Datasets Compared

to third person action recognition (e.g. 101 action classes

in [28] and 157 action classes in [26]), egocentric datasets

have a smaller number of classes (5-44 classes [2, 7, 6, 1,

15, 21, 37]), with considerable ambiguities (e.g. ‘turn on’ vs

‘turn off’ tap). Comparative recognition results have been

reported on these datasets in [29, 31, 27, 16, 22, 17].

Previously, three works noted the challenge and diffi-

culty in defining temporal bounds for egocentric videos [29,

1, 37]. In [29], Spriggs et al. discussed the level of granular-

ity in action labels (e.g. ‘break egg’ vs ‘beat egg in a bowl’)

for the CMU dataset [2]. They also noted the presence

of temporally overlapping object interactions (e.g. ‘pour’

while ‘stirring’). In [35], multiple annotators were asked

to provide temporal bounds for the same object interaction.

The authors showed variability in annotations, yet did not

detail what instructions were given to annotators when la-

beling these temporal bounds. In [37], the human ability

to order pairwise egocentric segments was evaluated as the

snippet length varied. The work showed that human per-

ception improves as the size of the segment increases to 60

frames, then levels off.

To summarize, temporal bounds for object interactions

in egocentric video have been overlooked and no previ-

ous work attempted to analyze the influence of consistency

of temporal bounds or the robustness of representations to

variability in these bounds. This paper particularly attempts

to answer both questions; how consistent are current tempo-

ral bound labels in egocentric datasets? and how sensitive

are action recognition results to changes in these temporal

bounds? We next delve into answering these questions.

3. Temporal Bounds: Inspecting Inconsistency

Current egocentric datasets are annotated for a number

of action classes, described using a verb-noun label. Each

class instance is annotated with its label as well as the

temporal bounds (i.e. start and end times) that delimit the

frames used to learn the action model. Little information

is typically provided on how these manually labeled tempo-
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Figure 1: Annotations for action ‘pour sugar/oil’ from BEOID, GTEA Gaze+ and CMU. Aligned key frames are shown along

with ground truth annotations (red). The yellow rectangle encloses the motion strictly involved in ‘pour’.

ral bounds are acquired. In Section 3.1, we compare labels

across and within egocentric datasets. We then discuss in

Section 3.2 how variability is further increased when multi-

ple annotators for the same action are employed.

3.1. Labeling in Current Egocentric Datasets

We study ground truth annotations for three pub-

lic datasets, namely BEOID [1], GTEA Gaze+ [6] and

CMU [2]. Observably, many annotations base the start and

end of an action as respectively the first and last frames

when the hands are visible in the field of view. Other an-

notations tend to segment an action more strictly, includ-

ing only the most relevant physical object interaction within

the bounds. Figure 1 illustrates an example of three differ-

ent temporal bounds for the ‘pour’ action across the three

datasets. Frames marked in red are those that have been

labeled in the different datasets as containing the ‘pour’ ac-

tion. The annotated temporal bounds in this example vary

remarkably; (i) BEOID’s are the tightest; (ii) The start of

GTEA Gaze+’s segment is belated: in fact, the first frame

in the annotated segment shows some oil already in the pan;

(iii) CMU’s segment includes picking the oil container and

putting it down before and after pouring. These conclusions

extend to other actions in the three datasets.

We observe that annotations are also inconsistent within

the same dataset. Figure 2 shows three intra-dataset annota-

tions. (i) For the action ‘open door’ in BEOID, one segment

includes the hand reaching the door, while the other starts

with the hand already holding the door’s handle; (ii) For

the action ‘cut pepper’ in GTEA Gaze+, in one segment the

user already holds the knife and cuts a single slice of the

vegetable. The second segment includes the action of pick-

ing up the knife, and shows the subject slicing the whole

pepper through several cuts. Note that the length difference

between the two segments is considerable - the segments

are respectively 3 and 80 seconds long; (iii) For the action

‘crack egg’ in CMU, only the first segment shows the user

tapping the egg against the bowl.

While the figure shows three examples, such inconsis-

Figure 2: Inconsistency of temporal bounds within datasets.

Two segments from each action are shown with consider-

able differences in start and end times.

tencies have been discovered throughout the three datasets.

However, we generally observe that GTEA Gaze+ shows

more inconsistencies, which could be due to the dataset

size, as it is the largest among the evaluated datasets.

3.2. Multi­Annotator Labeling

As noted above, defining when an object interaction be-

gins and finishes is highly subjective. There is usually little

agreement when different annotators segment the same ob-

ject interaction. To assess this variability, we collected 5 an-

notations for several object interactions from an untrimmed

video of the BEOID dataset. First, annotators were only in-

formed of the class name and asked to label the start and

the end of the action. We refer to these annotations as

conventional. We then asked a different set of annotators

to annotate the same object interactions following our pro-

posed Rubicon Boundaries (RB) approach which we will

present in Section 5. Figure 3 shows per-class box plots

for the Intersection-over-Union (IoU) measure for all pairs

of annotations. RB annotations demonstrate gained consis-

tency for all classes. For conventional annotations, we re-

port an average IoU = 0.63 and a standard deviation of 0.22,

whereas for RB annotations we report increased average

IoU = 0.83 with a lower standard deviation of 0.11.
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Figure 3: IoU comparison between conventional (red) and

RB (blue) annotations for several object interactions.

To assess how consistency changes as more annotations

are collected, we employ annotators via the Amazon Me-

chanical Turk (MTurk) for two object interactions from

BEOID, namely the actions of ‘scan card’ and ‘wash cup’,

for which we gathered 45 conventional and RB labels. Box

plots for MTurk labels are included in Figure 3, showing

marginal improvements with RB annotations as well. We

will revisit RB annotations in detail in Section 5.

In the next Section, we assess the robustness of cur-

rent action recognition approaches to variations in temporal

boundaries.

4. Temporal Bounds: Assessing Robustness

To assess the effect of temporal bounds on action recog-

nition, we systematically vary the start and end times of

annotated segments for the three datasets, and report com-

prehensive results on the effect of such alterations.

Results are evaluated using 5-fold cross validation. For

training, only ground truth segments are considered. We

then classify both the original ground truth and the gener-

ated segments. We provide results using Improved Dense

Trajectories [32] encoded with Fisher Vector [23] (IDT

FV)1 and Convolutional Two-Stream Network Fusion for

Video Action Recognition (2SCNN) [8]. The encoded IDT

FV features are classified with a linear SVM. Experiments

on 2SCNN are carried out using the provided code and

the proposed VGG-16 architecture pre-trained on ImageNet

and tuned on UCF101 [28]. We fine-tune the spatial, tem-

poral and fusion networks on each fold’s training set.

Theoretically, the two action recognition approaches are

likely to respond differently to variations in start and end

times. Specifically, 2SCNN averages the classification re-

sponses of the fusion network obtained on n frames ran-

domly extracted from a test video v of length |v|. In our ex-

periments, n = min(20, |v|). Such strategy should ascribe

some degree of resilience to 2SCNN. IDT densely samples

feature points in the first frame of the video, whereas in the

following frames only new feature points are sampled to re-

1IDT features have been extracted using GNU Parallel [30].

Dataset N. of gt segments N. of gen segments Classes

BEOID [1] 742 16691 34

GTEA Gaze+ [6] 1141 22221 42

CMU [2] 450 26160 31

Table 1: Number of ground truth/generated segments and

number of classes for BEOID, GTEA Gaze+ and CMU.

Figure 4: Video’s length distribution across datasets.

place the missing ones. This entails that IDT FV should

be more sensitive to start (specifically) and end time vari-

ations, at least for shorter videos. This fundamental differ-

ence makes both approaches interesting to assess for robust-

ness.

4.1. Generating Segments

Let vgt be a ground truth action segment obtained by

cropping an untrimmed video from time sgt to time egt,

which denote the annotated ground truth start and end times.

We vary both sgt and egt in order to generate new action

segments with different temporal bounds. More precisely,

let s0gen = sgt −∆ and let sngen = sgt + ∆. The set con-

taining candidate start times is defined as:

S = {s0gen, s
0

gen + δ, s0gen + 2δ, ..., s0gen + (n− 1)δ, sngen}

Analogously, let e0gen = egt −∆ and let engen = egt + ∆,

the set containing candidate end times is defined as:

E = {e0gen, e
0

gen + δ, e0gen + 2δ, ..., e0gen + (n− 1)δ, engen}

To accumulate the set of generated action segments, we take

all possible combinations of sgen ∈ S and egen ∈ E and

keep only those such that the Intersection-over-Union be-

tween [sgt, egt] and [sgen, egen] ≥ 0.5. In all our experi-

ments, we set ∆ = 2 and δ = 0.5 seconds.

4.2. Comparative Evaluation

Table 1 reports the number of ground truth and gener-

ated segments for BEOID, GTEA Gaze+ and CMU. Fig-

ure 4 illustrates the segments’ length distribution for the

three datasets, showing considerable differences: BEOID

and GTEA Gaze+ contain mostly short segments (1-2.5 sec-

onds), although the latter includes also videos up to 40 sec-

onds long. CMU has longer segments, with the majority

ranging from 5 to 15 seconds.
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Figure 5: BEOID: classification accuracy vs IoU, start/end shifts and length difference between gt and generated segments.

Figure 6: CMU: classification accuracy vs IoU, start/end shifts and length difference.

BEOID [1] is the evaluated dataset with the most con-

sistent and the tightest temporal bounds. When testing the

ground truth segments using both IDT FV and 2SCNN, we

observe high accuracy for ground truth segments - respec-

tively 85.3% and 93.5% - as shown in Table 2. When clas-

sifying the generated segments, we observe a drop in accu-

racy of 9.9% and 9.7% respectively.

Figure 5 shows detailed results where accuracy is re-

ported vs IoU, start/end shifts and length difference between

ground truth and generated segments. We particularly show

the results for shifts in the start and the end times inde-

pendently. A negative start shift implies that a generated

segment begins before the corresponding ground truth seg-

ment, and a negative end shift implies that a generated seg-

ment finishes before the corresponding ground truth seg-

ment. These terms are used consistently throughout this

section. Results show that: (i) as IoU decreases the accu-

racy drops consistently for IDT FV and 2SCNN - which

questions both approaches’ robustness to temporal bounds

alterations; (ii) IDT FV exhibits lower accuracy with both

negative and positive start/end shifts; (iii) IDT FV similarly

exhibits lower accuracy with negative and positive length

differences. This is justified as BEOID segments are tight;

by expanding a segment we include new potentially noisy or

irrelevant frames that confuse the classifiers; (iv) 2SCNN is

more robust to length difference which is understandable as

it randomly samples a maximum of 20 frames regardless of

the length. While these are somehow expected, we also note

that (v) 2SCNN is robust to positive start shifts.

Dataset IDT FVgt IDT FVgen 2SCNNgt 2SCNNgen

BEOID 85.3 75.4 93.5 83.8

CMU 54.9 52.8 76.0 71.7

GTEA Gaze+ 45.4 43.3 61.2 59.6

Table 2: Classification accuracy for ground truth and gener-

ated segments for BEOID, CMU and GTEA Gaze+.

CMU [2] is the dataset with longer ground truth segments.

Table 2 compares results obtained for CMU’s ground truth

and generated segments. For this dataset, IDT FV accuracy

drops by 2.1% for the generated segments, whereas 2SCNN

drops by 4.3%. In Figure 6, CMU consistently shows low

robustness for both IDT FV and 2SCNN. As IoU changes

from > 0.9 to > 0.5, we observe a drop of more than 20% in

accuracy for both. However, due to the long average length

of segments in CMU, the effect of shifts in start end times

as well as length differences is not visible for IDT FV. In-

terestingly for 2SCNN, the accuracy slightly improves with

positive start shift, negative end shift and negative length

difference. This suggests that CMU’s ground truth bounds

are somewhat loose and that tighter segments are likely to

contain more discriminative frames.

GTEA Gaze+ [6] is the dataset with the most inconsistent

bounds, based on our observations. Table 2 shows that accu-

racy for IDT FV drops by 2.1%, while overall accuracy for

2SCNN drops marginally (1.6%). This should not be mis-

taken for robustness, and that is evident when studying the

results in Figure 7. For all variations (i.e. start/end shifts
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Figure 7: GTEA Gaze+: classification accuracy vs IoU, start/end shifts and length difference.

Figure 8: Accuracy per class differences. Most classes exhibit a drop in accuracy when testing generated segments.

and length differences), the generated segments achieve

higher accuracy for both IDT FV and 2SCNN. When la-

bels are inconsistent, shifting temporal bounds does not sys-

tematically alter the visual representation of the tested seg-

ments. The generated segments tend to include (or exclude)

frames that increase the similarity between the testing and

training segments.

Figure 8 reports per-class differences between generated

and ground truth segments. Positive values entail that the

accuracy for the given class is higher when testing the gen-

erated segments, and vice versa. Horizontal lines indicate

the average accuracy difference. In total, 63% of classes in

all three datasets exhibit a drop in accuracy drop when using

IDT FV compared to 80% when using 2SCNN.

Dataset 2SCNNgt 2SCNNgen 2SCNN
aug

gt 2SCNNaug
gen

BEOID 93.5 83.8 92.3 86.6

GTEA Gaze+ 61.2 59.6 57.9 58.1

Table 3: 2SCNN data augmentation results.

Data augmentation: For completeness, we evaluate the

performance when using temporal data augmentation meth-

ods on two datasets. Generated segments in Section 4.1 are

used to augment training. We double the size of the training

sets, taking random samples for augmentation. Test sets re-

mained unvaried. Results are reported in Table 3. While we

observe an increase in robustness, we also notice a drop in

accuracy for ground truth segments, respectively of 1% and

4% for BEOID and GTEA Gaze+.

In conclusion, we note that both IDT FV and 2SCNN are

sensitive to changes in temporal bounds for both consistent

and inconsistent annotations. Approaches that improve ro-

bustness using data augmentation could be attempted, how-

ever a broader look at how the methods could be inherently

more robust is needed, particularly for CNN architectures.

5.Labeling Proposal: The Rubicon Boundaries

The problem of defining consistent temporal bounds of

an action is most akin to the problem of defining consis-

tent bounding boxes of an object. Attempts to define guide-

lines for annotating objects’ bounding boxes started nearly

a decade ago. Among others, the VOC Challenge 2007 [4]

proposed what has become the standard for defining the

bounding box of an object in images. These consistent la-

bels have been used to train state-of-the-art object detection

and classification methods. With this same spirit, in this

Section we propose an approach to consistently segment the

temporal scope of an object interaction.

Defining RB: The Rubicon Model of Action Phases [10],

developed in the field of Psychology, posits an action as

a goal a subject desires to achieve and identifies the main

sub-phases the person gets through in order to complete the

action. First, a person decides what goal he wants to ob-

tain. After forming his intention, he enters the so-called pre-

actional phase, that is a phase where he plans to perform

the action. Following this stage, the subject acts towards

goal achievement in the actional phase. The two phases are

delimited by three transition points: the initiation of prior

motion, the start of the action and the goal achievement.
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Figure 9: Rubicon Boundaries labeling examples for three

object interactions.

The model is named after the historical fact of Caesar

crossing the Rubicon river, which became a metaphor for

deliberately proceeding past a point of no return, which in

our case is the transition point that signals the beginning of

an action. We take inspiration from this model, specifically

from the aforementioned transitions points, and define two

phases for an object interaction:

Pre-actional phase This sub-segment contains the prelimi-

nary motion that directly precedes the goal, and is required

for its completion. When multiple motions can be identi-

fied, the pre-actional phase should contain only the last one;

Actional phase This is the main sub-segment containing the

motion strictly related to the fulfillment of the goal. The ac-

tional phase starts immediately after the pre-actional phase.

In the following section, we refer to a label as an RB an-

notation when the beginning of an object interaction aligns

with the start of the pre-actional phase and the ending of the

interactions aligns with the end of the actional phase.

Figure 9 depicts three object interactions labeled accord-

ing to the Rubicon Boundaries. The top sequence illustrates

the action of cutting a pepper. The sequence shows the sub-

ject fetching the knife before cutting the pepper and taking

it off the plate. Based on the aforementioned definitions,

the pre-actional phase is limited to the motion of moving

the knife towards the pepper in order to slice it. This is di-

rectly followed by the actional phase where the user cuts

the pepper. The actional phase ends as the goal of ‘cut-

ting’ is completed. The middle sequence illustrates the ac-

tion of opening a fridge, showing a person approaching the

fridge, reaching towards the handle before pulling the fridge

door open. In this case, the pre-actional phase would be

the reaching motion, while the actional phase would be the

pulling motion.

Evaluating RB: We evaluate our RB proposal for consis-

tency, intuitiveness as well as accuracy and robustness.

(i) Consistency: We already reported consistency results in

Section 3.2, where RB annotations exhibit higher average

overlap and less variation for all the evaluated object inter-

actions - average IoU for all pairs of annotators increased

from 0.63 for conventional boundaries to 0.83 for RB. Fig-

ure 10 illustrates per-class IoU box plots for the pre-actional

Figure 10: IoU comparison among the pre-actional phase

(green), the actional phase (yellow) and their concatenation

(blue) for several object interactions of BEOID.

and the actional phases separately, along with the concate-

nation of the two. For 7 out of the 13 actions, the actional

phase was more consistent than the pre-actional phase, and

for 12 out of the 13 actions, the concatenation of the phases

proved the highest consistency.

(ii) Intuitiveness: While RB showed higher consistency in

labeling, any new approach for temporal boundaries would

require a shift in practice. We collect RB annotations from

university students as well as from MTurk annotators. Lo-

cally, students successfully used the RB definitions to an-

notate videos with no assistance. However, this has not

been the case for MTurk annotators for the two object in-

teractions ‘wash cup’ and ‘scan card’. The MTurk HIT pro-

vided the formal definition of the pre-actional and actional

phases, then ran two multiple-choice control questions to

assess the ability of annotators to distinguish these phases

from a video. The annotators had to select from textual de-

scriptions what the pre and the actional phases entailed. For

both object interactions, only a fourth of the annotators an-

swered the control questions correctly.

Three possible explanations could be given, namely:

annotators were accustomed to the conventional labeling

method and did not spend sufficient time to study the defini-

tions, or the definitions were difficult to understand. Further

experimentation is needed to understand the cause.

(iii) Accuracy: We annotated GTEA Gaze+ using the Rubi-

con Boundaries, by employing three people to label its 1141

segments2. For these experiments, we asked annotators to

label both the pre-actional and the actional phase.

In Table 4, we report results for the actional phase alone

(RBact) as well as the concatenation of the two phases (RB),

using 2SCNN on the same 5 folds from Section 4.2. The

concatenated RB segments proved the most accurate, lead-

ing to an increase of more than 4% in accuracy compared

to conventional ground truth segments. Temporal augmen-

2RB labels and video of results are available on project webpage:

http://www.cs.bris.ac.uk/˜damen/Trespass/
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Figure 11: GTEA Gaze+: class accuracy difference be-

tween conventional and RB annotations. Some classes

achieved higher accuracy only with RBact, while other did

only with the full RB segment. Bold highlights such cases.

tation on conventional labels (Conv
aug

gt ) results in a drop of

accuracy by 7.7% compared with the RB segments, high-

lighting that consistent labeling cannot be substituted with

data augmentation. Figure 11 shows the accuracy per class

difference between the two sets of RB annotations and the

conventional labels. When using RBact, 21/42 classes im-

proved, whereas accuracy dropped for 11 classes compared

to the conventional annotations. When using the full RB

segment, 23/42 classes improved, while 10 classes were

better recognized with the conventional annotations. In

each case, 10 and 9 classes remain unchanged.

Given that the experimental setup was identical to that

used for the conventional annotations, the boost in accuracy

can be ascribed solely to the new action boundaries. Indeed,

the RB approach helped the annotators to more consistently

segment the object interactions contained in GTEA Gaze+,

which is one of the most challenging datasets for egocentric

action recognition.

(iv) Robustness: Table 4 also compares the newly anno-

tated RB segments to generated segments with varied start

and end times, as explained in Section 4.1. While RBgen

shows higher accuracy than the Conventionalgen segments

(59.6% as reported in Table 2), we still observe a clear drop

in accuracy between gt and gen segments. Interestingly, we

observe improved robustness when using the actional phase

alone. Given that the actional segment’s start is closer in

time to the beginning of the object interaction, when vary-

ing the start of the segment we are effectively including part

of the pre-actional phase in the generated segment, which

assists in making actions more discriminative.

Importantly, we show that RB annotations improved

Convgt Conv
aug

gt

act

RBgt

act

RBgen
RBgt RBgen

61.2 57.9 64.9 63.2 65.6 61.7

Table 4: GTEA Gaze+: 2SCNN classification accuracy

comparison for conventional annotations (ground truth and

augmented) and RB labels (ground truth and generated).

both consistency and accuracy of annotations on the largest

dataset of egocentric object interactions. We believe these

form solid basis for further discussions and experimentation

on consistent labeling of temporal boundaries.

6. Conclusion and Future Directions

Annotating temporal bounds for object interactions is the

base for supervised action recognition algorithms. In this

work, we uncovered inconsistencies in temporal bound an-

notations within and across three egocentric datasets. We

assessed the robustness of both hand-crafted features and

fine-tuned end-to-end recognition methods, and demon-

strated that both IDT FV and 2SCNN are susceptible to

variations in start and end times. We then proposed an ap-

proach to consistently label temporal bounds for object in-

teractions. We foresee three potential future directions:

Other NN architectures? While 2SCNN randomly sam-

ples frames from a video segment, the classification accu-

racy is still sensitive to variations in temporal bounds. Other

architectures, particularly those that model temporal pro-

gression using Recurrent networks (including LSTM), rely

on labeled training samples and would thus equally benefit

from consistent labeling. Evaluating the robustness of such

networks is an interesting future direction.

How can robustness to temporal boundaries be

achieved? Classification methods that are inherently ro-

bust to temporal boundaries, while learning from supervised

annotations, is a topic for future directions. As deep ar-

chitectures reportedly outperform hand-crafted features and

other classifiers, architectures that are designed to handle

variations in start and end times are desired.

Which temporal granularity? The Rubicon Boundaries

address consistent labeling of temporal bounds, but they

do not address the concern of granularity of the action. Is

the action of cutting a whole tomato composed of several

short cuts or is it one long action? The Rubicon Boundaries

model discusses actions relative to the goal a person wishes

to accomplish. The granularity of an object interaction is

another matter, and annotating the level of granularity con-

sistently has not been addressed yet. Expanding Rubicon

Boundaries to enable annotating the granularity would re-

quire further investigation.

Data Statement & Ack: Public datasets were used in this

work; no new data were created as part of this study. RB an-

notations are available on the project’s webpage. Supported

by EPSRC DTP and EPSRC LOCATE (EP/N033779/1).
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